國立中央大學八十九學年度轉學生入學試題卷

- Hydrogen cyanide (HCN) is prepared commercially by the reaction of methane, CH₄(g), ammonia, NH₃(g), and oxygen, O₂(g), at high temperature. The other product is gaseous water.
 - (a) Write a chemical equation for the reaction.(5 points)
 - (b) What volume of HCN(g) can be obtained from 20.0 L CH₄(g), 20.0 L NH₃(g), and 20.0 L O₂(g)? The volumes of all gases are measured at the same temperature and pressure. (5 points)
- Combustion of table sugar produces CO₂(g) and H₂O(l).
 When 1.46 g of table sugar is combusted in a constant volume (bomb) calorimeter, 24.0 kJ of heat is liberated.
 - (a) Assuming that table sugar is pure sucrose, $C_{12}H_{22}O_{11}(s)$, write the balanced equation for the combustion reaction. (4 points)
 - (b) Cálculate ΔE for the combustion reaction of sugar.(3 points)
 - (c) Calculate ΔH for the combustion reaction of sugar.(3 points)
- You have the following reagents on hand:

_ ·	
Solids (pK, of acid form is given)	solutions
Benzoic acid (4.9)	5.0 M HCI
Sodium acetate (4.74)	1.0 M acetic acid
Potassium fluoride (3.14)	2.6 M NaOH
Ammonium chloride (9.26)	1.0 M HOCl (7.46)

What combinations of reagents would you use to prepare buffers at the following pH values?

- Compare the relative stability of the following species and calculate their bond order, indicate their magnetic property (that is paramagnetic or diamagnetic): O₂, O₂*, O₂*, O₂²*. (10 points).
- Write Lewis structures that obey the octet rule for the following species. Assign the formal charge for each atom.
 - (a) POCI, (4 points) (b) SO₂CI₂ (3 points)
 - (c) NO₄³ (3 points).
- 6. Name five petrochemicals and their usage. (10 points)

- What are coordination complexes? Why the coordination complexes are so important in biology system? (10 points)
- 8. The reaction

$$\Gamma(aq) + OCl^*(aq) = IO^*(aq) + Cl^*(aq)$$

was studied and the following data were obtained:

[[], (mol/L)	[OCl ⁻] _a (mol/L)	Initial Rate (mol/L, s)
0.12	0.18	7.91 x 10 ⁻²
0.06	0.18	3.95 x 10 ⁻²
0.03	0.090	9.88×10^{-3}
0.24	0.090	7.91 x 10 ⁻²

- (a) What is the rate law? (5 points)
- (b) Calculated the rate constant. (5 points)
- 9. (a) Each human DNA molecule contains roughly 5 x 10° base pairs. The spacing between base pairs along a given chains is 340 pm. If a single human DNA molecule was stretched to its full length, how long would it be? (5 points)
 - (b) The compound cis-platin appears to kill cancer cells by inhibiting DNA synthesis. Given the following structural information about cis-platin,

information form (a), and the fact that the chloride ion is easily displaced by other donor molecules in cisplatin, speculate on how cis-platin may interact with DNA. (5 points)

- 10. What reaction will take place at the cathode and the anode when each of the following is electrolyzed?
 - (a) Molten KF (3 points)
 - (b) 1.0 M KF solution (3 points)
 - (c) 1.0 M H₂O₂ solution containing 1.0 M HCl .(4 points)